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To date, there have been many hypotheses on protein folding and certain prog-
ress surely has been made, such as Anfinsen’s dogma (1), Levinthal paradox (2). 
Recently, Mittal et al. analyzed close to 4,000 folded proteins from their pub-
lished crystal structures in the protein data bank (PDB) with a bioinformatics and 
computational method, and innovatively proposed that protein folding is a direct 
consequence of a narrow band of stoichiometric occurrences of amino-acids in 
primary sequences, regardless of the size and the fold of a protein (3). Contrary to 
all prevalent views, this hypothesis actually negated the roles of specific amino-
acid interactions and the sequence order of the amino acids in protein folding. In 
this connection, it should be noted that preferential interactions between amino 
acids are the basis for introducing knowledge-based potentials, which in turn 
provide the underpinning for present day three-dimensional protein structure 
prediction by modeling and simulation (4-7 and references therein). Although 
their data analysis approaches seem scientifically correct, the “unified conclu-
sion” drawn from a quantity of statistic data may not explain principles complied 
by every individual protein for its folding. Nevertheless, spatial distribution of 
neighborhoods for all amino-acids, rather than residues adjacent along the pri-
mary sequence, determine the protein folding, as proposed by Mittal et al. is a 
meaningful finding. 

It is the study of the properties of protein folding in certain types of proteins that is 
being used to deduce the common properties shared by other proteins; such stud-
ies has already laid the foundation for almost every hypothesis on protein folding. 
For example, the reason why Anfinsen’s dogma is widely accepted is that it is 
deduced from the study on the features of ribonuclease molecule (1). On the other 
hand, the inspiration of Mittal et al. was originated from Chargaff’s Rules, a state-
ment on DNA composition properties. It is well known that DNA is composed 
by only 4 kinds of nucleotides while the types of amino acids in proteins are as 
many as 20. Furthermore, DNA composition is relatively simple and conservative 
in all species; but the structure of protein is far more complicated in that different 
proteins have different structures even in the same species, and the structure of 
a protein with the same function is different in different species. Therefore, it is 
extremely difficult trying to use one uniform concept to explain all kinds of pro-
tein foldings and structural features. 

For a decade, our group has been constantly devoted to the study on protein mis-
folding diseases. The conformational conversion of amyloid proteins, especially 
prions, is associated with numerous protein aggregation pathologies and infec-
tious properties. We will comment on this issue based on the data obtained from 
molecular biological and molecular dynamic prion protein studies.
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Each prion protein contains one prion-forming domain 
(PrD), essential to its aggregation. It is found that in the 
PrDs of Ure2p, Sup35p and Rnq1p, the first three yeast prion 
proteins to be identified, the glutamine (Q) and asparagine 
(N) content is unusually high (48% for Ure2p-1–89, 46% 
for Sup35p and 43% for Rnq1p) (8-10). Mutagenesis stud-
ies of Sup35p and Ure2p have confirmed the important role 
played by the Q/Ns content in prion formation (8, 9). Based 
on the special amino acid Q/Ns’ content and other factors to 
compose prion, Lindquist and her co-workers conducted a 
bioinformatic proteome-wide survey to score every PrD in 
yeast and revealed that ~ 200 proteins have candidate PrDs, 
in which the amyloid and prion-forming properties of the 
100 highest-scored PrDs were tested (11). They identified 
24 proteins that satisfied the criterion for prion behavior, 
of which several were proved to be prion (New1p, Swi1p, 
Mot3p and Cyc8p). Their study has suggested that specific 
amino-acids could contribute to the structural feature of a 
certain protein. 

Subsequently, Wickner and his team used Ure2p as a 
model system and randomly shuffled the order of amino 
acids of its PrD while keeping the amino acid composition 
(12). Five Ure2p variants were generated. Test performed 
in vitro shows that the prion domains of all five have readily 
formed amyloid fibers under native conditions. Meanwhile, 
four of them formed stable prions in vivo, and the fifth 
formed unstable prions that could only be maintained and 
transmitted under selective conditions. Liu et al. studied 
Sup35p and shuffled its PrD without altering its amino 
acid composition, which even formed amyloid fiber in 
vitro (13). The study on the prion formation of shuffled 
PrD of Sup35p in vivo was conducted by Wickner’s 
group (14). Seven shuffled variants were generated, five 
of which expressed normally in vivo. And for these five, 
it was found that four of them formed stable prions and 
the fifth formed unstable prion. It needs to be pointed out 
that their results suggested that the Sup35p oligopeptide 
repeats (PQGGYQQYN, which is repeatedly expressed 
in prion domain of Sup35p) were not indispensable for 
prion formation. These oligopeptide repeats were first 
found in mammalian prion protein and were thought to 
influence their conformational conversion to the prion 
state (15). 

Moreover, our group has used the molecular dynamics sim-
ulation to study the aggregation characters of a short 7 pep-
tide fragment (GNNQQNY) in yeast prion Sup35p which 
could form amyloid fibrils (16, 17). The seven amino-acid 
residues were reorganized randomly into 9 different frag-
ments (shown in Table I), without changing any amino acid 
content. We performed 20ns simulation for each fragment 
system at pH 7 and temperature 330 K. The RMSD (Root 
Mean Square Derivative) value of each fragment system 

after the simulation was quite close, between 3.214 and 
4.473, which indicated that the structural diversity of each 
fragment were very similar. Hereafter we calculated aggre-
gation time of each fragment system and found that these 
nine systems aggregated into one cluster eventually despite 
different time they spent. Although changing the permuta-
tion of the seven amino-acid residues has made impacts on 
the aggregation speeds of nine systems, their aggregation 
properties have not been influenced. Both Wickner and our 
groups’ results indicated that the aggregation properties of 
prion proteins are independent to the order of amino-acid 
sequences. 

Our opinion for the thesis of Mittal et al. comes from data on 
only one kind of specific proteins. Results obtained cannot be 
employed to prove that all the protein folding features of all 
proteins may be in accordance with this principle. We believe 
that special amino-acids should be crucial for the structural 
features of certain type of proteins, and it might only be in 
a limited fixed type of proteins that the occurrence of ami-
no-acids (stoichiometry) determines the structural features. 
However, it is still open to question whether stoichiometry 
driven protein folding is a universal concept that applies to 
all proteins. 
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Table I
The sequences of 9 randomly reorganized 7 peptides 

and the computation after simulation.

Sequence RMSD (Å)
Aggregation 
Time* (ns)

wt GNNQQNY 3.214 5.91
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2 GNQNQNY 3.494 1.97
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*Aggregation time, the time that each fragment system aggregate to one 
cluster.
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