Bowen Li, Yidi Wang, Fangyuan Tian, Guanshu Li, Zhaohong Zhang, Youtao Song,
College of Environment, Liaoning University
Jun Wang
College of Chemistry, Liaoning University
Abstract
In order to expand the light response range of wide band-gap semiconductor photocatalyst (NaTaO3) for effective photocatalytic conversion of Cr(VI), an up-conversion luminescence agent (Er3+:YAlO3) is combined with NaTaO3 and a visible-light driven photocatalyst, NaTaO3/Er3+: YAlO3, is prepared. Moreover, several conduction band co-catalysts (Ag, Au and Pt) are deposited the surface of NaTaO3/Er3+: YAlO3, respectively, to facilitate the transfer rate of photo-generated electrons. X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) analyses are employed to confirm the morphology, microstructure and composition of the prepared photocatalysts. In addition, UV–vis diffuse reflectance spectra are determined to explore the visible-light absorption properties of Er3+:YAlO3, NaTaO3, NaTaO3/Er3+:YAlO3 and X NaTaO3/Er3+: YAlO3 (X= Ag, Au and Pt). Photoluminescence (PL) spectra are used to estimate the recombination rate of electron–hole pairs. The effects of irradiation time, photosource kind, solution acidity and used times on the photocatalytic capabilities of NaTaO3/Er3+:YAlO3 and X/NaTaO3/Er3+:YAlO3 (X = Ag, Au and Pt) are investigated in detail. The results show that the uses of up-conversion luminescence agent(Er3+:YAlO3) and co-catalysts (Ag, Au and Pt) can promote NaTaO3 to utilize visible-light to carry out the photocatalytic conversion of Cr(VI). Particularly, the prepared Au/NaTaO3/Er3+:YAlO3 nanocomposite with 1.0 wt% Au and 0.3:1.0 molar ratio of Er3+:YAlO3 and NaTaO3 shows the highest photocatalytic activity in conversion of Cr(VI).
Read the full article here:
100-Preparation of new visible-light driven nanocomposite photocatalysts, XNaTaO3Er3+YAlO3 (X = Ag, Au and Pt), for photocatalytic conversion of Cr(VI).pdf